
Lecture 13: Extended GCD Algorithm

GCD & XGCD

Objective

The objective of this lecture is to study the GCD and the
Extended GCD algorithms
Furthremore, we shall find another technique to find the
multiplicative inverse of X ∈ Z∗p in the group (Z∗p,×)

GCD & XGCD

Recursive GCD

Given integers A and B , our objective is to find the GCD of A
and B
We shall rely on the following identity to calculate the GCD
efficiently

gcd(A,B) = gcd(B,R),

where R is the remainder of the division of A by B (previous
lectures we already saw an efficient algorithm for division).
Why is this algorithm efficient? Because, if B 6 A, then the
number of bits needed to represent (B,R) is (at least) one less
than the number of bits needed to represent (A,B)
What is the base case of this algorithm? If B = 0, then we
know that A = gcd(A,B)
Let us write the code for this recursive algorithm
GCD(A,B):

If B == 0 : return A

else : return GCD(B,A%B)

GCD & XGCD

Unrolled GCD

We shall now unroll this recursion to make the code more
efficient
GCD(A,B):

While B! = 0 :

R = A%B
A = B
B = R

return A

GCD & XGCD

Recursive Extended GCD I

The extended GCD of (A,B) returns three integers (G , α, β)
such that

G = gcd(A,B) and G = α · A+ β · B.

Note that we can use the extended GCD algorithm to invert
X ∈ Z∗p, where p is a prime. Observe that
(G , α, β) = XGCD(X , p) shall satisfy the following constraints

G = 1 and G = α · X + β · p.

Taking mod p on both side of the equality, we get that α
mod p is the multiplicative inverse of X in the group (Z∗p,×)
Let us use the template of the recursive GCD algorithm to
implement the recursive extended GCD algorithm.

GCD & XGCD

Recursive Extended GCD II

Again, we shall use B = 0 as the base case. In this case we
have G = gcd(A,B) = A, and we can express
G = 1 · A+ 0 · B . Therefore, the base case should return
(G , α, β) = (A, 1, 0)

Now, let us consider the recursive step. Suppose from the
recursive call XGCD(B,R) returns (G , α′, β′). Now, we need
to find what should XGCD(A,B) return.
Observe that recursively we have the guarantee that
G = α′ · R + β′ · R . Note that R = A− γ · B . Substituting
this expression of R , we get

G = α′ · B + β′ · (A− γ · B) = β′ · A+ (α′ − γβ′) · B.

Therefore, we can set α = β′ and β = α′ − γβ′.
So, XGCD(a, b) should return (G , β′, α′ − γβ′).

GCD & XGCD

Recursive Extended GCD III

Here we write down the code.
XGCD(A,B):

If B == 0 : return(A, 1, 0)

Else :

R = A%B
(G , α′, β′) = XGCD(B,R)
γ = (A− R)/B
return (G , β′, α′ − γ · β′)

GCD & XGCD

Unrolled Extended GCD I

We shall implement the program stack ourselves
Let us do this in two steps. First, we shall write the code that
implements the recursive calls made by the GCD calculations.
In the second part, we shall use the information on the return
path up.
The first part of the code proceeds as follows
XGCD(A,B) :

stack = []

While B! = 0 :

R = A%B
M = (A− R)/B
stack.append([M,NULL,NULL])
A = B
B = R

stack.append([∞, 1, 0])

gcd = A

GCD & XGCD

Unrolled Extended GCD II

At this point, let us pause and understand how our data
structure looks like. Suppose we choose the notation that
(mi , αi , βi) are the values of (m, α, β) in the i-th depth
recursion.

i = 0 i = 1 i = 2 · · · i = d − 2 i = d − 1
m1 m2 m3 · · · md−1 md =∞

NULL NULL NULL · · · NULL 1
NULL NULL NULL · · · NULL 0

Now, we run an iterator i ∈ {d − 2, d − 3, . . . , 0} and update
the entries αi and βi .

GCD & XGCD

Unrolled Extended GCD III

Here is the remaining part of the code
· · · Continued from the frist part · · ·

d = len(stack)

for i in {d − 2, d − 3, . . . , 0} :

stack[i][1] = stack[i + 1][2]
stack[i][2] = stack[i + 1][1]− stack[i][0] · stack[i + 1][2]

Return (gcd, stack[0][1], stack[0][2])

GCD & XGCD

Multiplicative Inverse in Z∗p

Let X ∈ Z∗p, where p is a prime
Therefore, we have gcd(X , p) = 1
By the extended GCD algorithm, we can find integers α and β
such that 1 = α · X + β · p
Now, we take mod p on both sides of the equality to obtain

1 = (α mod p) · x + 0 mod p.

That is, we have (α mod p) as the multiplicative inverse of X
in the group (Z∗p,×)
This computation can be performed by taking mod p in the
stack[i][1] and stack[i][2] evaluations in the extended GCD
algorithm

GCD & XGCD

